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SUMMARY

Many problems of fundamental and practical importance have multiscale solutions. Direct numerical
simulation of these multiscale problems is di�cult due to the range of length scales in the underlying
physical problems. Here, we describe two multiscale methods for computing nonlinear partial di�erential
equations with multiscale solutions. The �rst method relies on constructing local multiscale bases for
di�usion-dominated problems. We demonstrate that such an approach can be used to upscale two-
phase �ow in heterogeneous porous media. The second method is to construct semi-analytic multiscale
solutions local in space and time. We use these solutions to approximate the large-scale solution for
convection-dominated transport. This approach overcomes the common di�culty due to the memory
e�ect in deriving the averaged equations for convection-dominated transport. Our multiscale analysis
provides a useful guideline for designing e�ective numerical methods for incompressible �ow. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many physical problems have multiscale solutions. Examples include the behaviour of compos-
ite materials, wave propagation in random media, �ow and transport through heterogeneous
porous media, and turbulent �ow. Accurately computing these multiscale solutions presents
a challenge due to the wide range of length scales in the solutions. Resolving small-scale
dynamics has been a bottleneck in computation. For engineering applications, it is desirable
to develop a multiscale method that captures the large-scale solution accurately on a coarse
grid, but does not require resolving the small-scale features. Such multiscale methods o�er
signi�cant computational savings.
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We use immiscible two-phase �ow in heterogeneous porous media and incompressible �ow
as examples to illustrate some key issues in designing multiscale computational methods
for �uid �ows. Two-phase �ows have many applications in oil reservoir simulations and
environmental science problems. Through the use of sophisticated geological and geostatistical
modelling tools, engineers and geologists can now generate highly detailed, three-dimensional
representations of reservoir properties. The direct numerical simulation of these highly resolved
models for reservoir simulation is not generally feasible because their �ne level of detail (tens
of millions grid blocks) places prohibitive demands on computational resources. Therefore,
the ability to coarsen these highly resolved geologic models to levels of detail appropriate for
reservoir simulation (tens of thousands grid blocks), while maintaining the integrity of the
model for purpose of �ow simulation, is clearly needed.
In recent years, we have introduced a multiscale �nite element method (MsFEM) for solving

partial di�erential equations with multiscale solutions [1–4]. The central goal of this approach
is to obtain the large-scale solutions accurately and e�ciently without resolving the small-scale
details. The main idea is to construct �nite element base functions which capture the small-
scale information within each element. The small scale information is then brought to the large
scales through the coupling of the global sti�ness matrix. Thus, the e�ect of small scales on
the large scales is correctly captured. In our method, the base functions are constructed from
the leading order homogeneous elliptic equation in each element. As a consequence, the base
functions are adapted to the local microstructure of the di�erential operator. In the case of
two-scale periodic structures, we have proved that the multiscale method indeed converges to
the correct solution independent of the small scale in the homogenization limit [2].
We remark that the idea of using base functions governed by the di�erential equations has

been used elsewhere in the �nite element community, see e.g. Reference [5]. The multiscale
�nite element method presented here is also similar in spirit to the residual-free bubble �nite
element method [6] and the variational multiscale method [7].

2. FORMULATION FOR TWO-PHASE FLOW

We consider the �ow and transport problems in porous media in a hierarchy of approximation
levels. At the microscale, solute transport is governed by the convection–di�usion equation
in a homogeneous �uid. However, in the case of porous media, it is very di�cult to obtain
full information about the pore structure. An averaging procedure has to be carried out, and
the porous medium becomes a continuum with certain macroscopic properties, such as the
porosity and permeability. With modern geostatistical techniques, one can routinely generate
a �ne grid model as large as tens of millions of grid blocks. As a �rst step, we upscale the
�ne grid model to a coarse grid model consisting of tens of thousands of coarse grid blocks
while preserving the integrity of the original �ne grid model. Once the coarse grid model is
obtained, it can be reapplied with di�erent boundary conditions or source distributions as is
typical in model validation and oil �eld management. This can reduce the computational cost
signi�cantly.
We consider a heterogeneous system which represents two-phase immiscible �ow. Our

interest is in the e�ect of permeability heterogeneity on the �ow, so we neglect the e�ect of
compressibility and capillary pressure. Also, we consider porosity to be constant. Each phase
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obeys Darcy’s law

vj=
krj(S)
�j

K�∇p (1)

For each phase j, j=o;w for oil and water, vj is Darcy’s velocity, krj is the relative per-
meability, and �j is the viscosity. In addition, p is pressure, S is water saturation, K� is
the permeability tensor, and � represents the pore diameter. All quantities are dimensionless.
Darcy’s law for each phase, coupled with mass conservation, can be manipulated to give the
pressure and saturation equations as

∇ · (�(S)K�∇p) = 0 (2)

@S
dt
+ u� · ∇f(S) = 0 (3)

where

�(S)=
krw(S)
�w

+
kro(S)
�o

; f(S)=
krw(S)=�w
�(S)

are the total �uid mobility, and the relative water mobility, respectively. These equations can
be solved subject to some appropriate initial and boundary conditions. The velocity �eld is
given by u�= vw + vo = − �(S)K �∇p.
We remark that the permeability tensor K� in an oil reservoir model contains a continuous

spectrum of scales that are not separable. The variation in the permeability tensor is also large,
with the ratio between the maximum and minimum permeability being as great as 106. See
References [8, 9] for discussions on reservoir characterization in heterogeneous porous media.
The high aspect ratio and the heterogeneity of the permeability �eld makes it very expensive
to solve the pressure equation.

3. MULTISCALE FINITE ELEMENT METHOD

We �rst review the MsFEM for solving the pressure equation with highly oscillating coe�-
cients. We consider the following elliptic problem:

L�u� := −∇ · (a�(x)∇u�)=f in�; u=0 on @� (4)

where a�(x)= (a�ij(x)) is a symmetric positive de�nite matrix, � is the physical domain and
@� denotes the boundary of domain �.
The main idea of the method is to construct �nite element base functions which capture

the small-scale information within each element. This is accomplished by requiring that the
base functions satisfy the leading order homogeneous di�erential equation within each coarse
grid element:

L��� = 0; x ∈ K
We need to specify boundary conditions for the multiscale base function within each element
K in order to solve it locally. The simplest choice of the boundary condition for the base
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function is a linear boundary condition, and we discuss this choice below. The MsFEM is
the Galerkin �nite element method with the �nite element solution space spanned by the
multiscale bases given above. When the coe�cient a� has a two-scale periodic structure, i.e.
a�(x)= a(x;x=�) with a(x; y) being periodic in y, we can show that the MsFEM gives a
convergent result uniform in � as � tends to zero [2].

Theorem 3.1
Let u� ∈ H 2(�) be the solution of (4) and uh be the �nite element solution obtained from
the space spanned by the multiscale bases, ��. Then we have

‖u� − uh‖H 16C(h+ �)‖f‖L2 + C
( �
h

)1=2
‖u0‖H 2 (5)

where u0 ∈ H 2(�) ∩W 1;∞(�) is the solution of the homogenized equation.

3.1. Over-sampling

As we can see from the above theorem, the MsFEM gives the correct homogenized result as
� tends to zero. In contrast, the error in the traditional FEM grows like O(h2=�2) as � → 0.
On the other hand, we also observe that when h ∼ �, the multiscale method attains large error
in both H 1 and L2 norms. This is what we call the resonance e�ect between the grid scale
(h) and the small scale (�) of the problem. We shall illustrate resonance in a speci�c case,
and propose a general over-sampling method to address the e�ect.
The resonance e�ect can be seen, for example, where scale separation is possible for a peri-

odic microstructure. Using standard homogenization theory [10], we can perform a multiscale
expansion for the base function, ��(x; y), with y= x=�:

��=�0(x) + ��1(x; y) + ���(x) +O(�2)

where �0 is the linear �nite element base and �1 is the �rst-order corrector. The boundary
corrector �� is chosen so that the boundary condition of �� on @K is exactly satis�ed by the
�rst three terms in the expansion. By solving a periodic cell problem for �j,

�y · a(x; y)�y �j=
@
@yi
aij(x; y) (6)

where �j has zero mean, we can express the �rst-order corrector as �1(x; y)= − �j@�0=@xj.
The boundary corrector, ��, then satis�es

�x · a(x;x=�)�x ��=0 in K

with boundary condition ��|@K =�1(x;x=�)|@K :
The oscillatory boundary condition of �� introduces a numerical boundary layer, which leads

to the so-called resonance error [1]. To avoid this resonance error, we need to incorporate
the multi-dimensional oscillatory information through the cell problem into our boundary
condition for ��. If we set ��|@K =(�0 + ��1(x;x=�))|@K , then the boundary condition for
��|@K becomes identically equal to zero. Therefore, we have �� ≡ 0. In this case, we have an
analytic expression for the multiscale base functions �� as follows:

��=�0(x) + ��1(x;x=�) (7)
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This set of multiscale bases avoids the boundary layer e�ect completely and can be com-
puted e�ciently, see www.ama.caltech.edu/∼westhead/MSFEM for numerical examples. For
its linear boundary condition, we refer to this as a linear multiscale FEM, or MsFEM-L.
Unfortunately, for problems that do not have scale separation and periodic microstructure,

we cannot use this approach to compute the multiscale base functions. Our convergence
analysis motivates an over-sampling method to overcome the di�culty due to scale resonance
[1]. The idea is quite simple and easy to implement. Since the boundary layer in the �rst-order
corrector is thin, O(�), we can sample in a domain with size larger than h+� and use only the
interior sampled information to construct the bases. By doing this, we can reduce the in�uence
of the boundary layer in the larger sample domain on the base functions signi�cantly. As a
consequence, we obtain an improved rate of convergence.

3.2. Accuracy and recovery of a small-scale solution

To assess the accuracy of our over-sampling method, we compare MsFEM with a traditional
linear �nite element method (LFEM) using a subgrid mesh, hs = h=M . The multiscale bases
are computed using the same subgrid mesh. Note that MsFEM only captures the solution at
the coarse grid h, while FEM tries to resolve the solution at the �ne grid hs. Our extensive
numerical experiments demonstrate that the accuracy of MsFEM on the coarse grid h is
comparable to that of the corresponding highly resolved LFEM calculation at the same coarse
grid. In some cases, MsFEM gives even more accurate results than LFEM.
We illustrate the convergence of the MsFEM for the case when the coe�cient is random

and has no scale separation nor periodic structure. In Figure 1, we show the results for
a log-normally distributed a�. In this case, the e�ect of scale resonance shows clearly for
MsFEM-L, i.e., the error increases as h approaches �. Here � ∼ 0:004 roughly equals the
correlation length, h. Even the use of an oscillatory boundary condition (MsFEM-O), which
is obtained by solving a reduced 1-D problem along the edge of the element [1], does not
help much in this case. On the other hand, MsFEM with over-sampling agrees well with the
highly resolved calculation.
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Figure 1. The l2-norm error of the solutions using various schemes for a log-normally
distributed permeability �eld. All solutions are compared to a �ne LFEM calculation.
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(a) (b)

Figure 2. (a) Fine grid horizontal velocity �eld, N =1024; and (b) Recovered horizontal
velocity �eld from the coarse grid calculation (N =64) using multiscale bases.

To solve the transport equation in the two-phase �ows, we need to compute the velocity
�eld from the elliptic equation for pressure, i.e. u�= − �(S)K�∇p. For MsFEM, the �ne
scale velocity can be easily recovered from the multiscale base functions, which provide
interpolations from the coarse h-grid to the �ne hs-grid. To illustrate that we can recover the
�ne grid velocity �eld from the coarse grid pressure calculation, we use a layered random
medium. We compare the computations of the horizontal velocity �elds obtained by two
methods. In Figure 2(a), we plot the horizontal velocity �eld obtained by using a �ne grid
(N =1024) calculation. In Figure 2(b), we plot the same horizontal velocity obtained by using
the coarse grid (N =64) pressure calculation and using the multiscale bases to interpolate the
�ne grid velocity. We can see that the recovered velocity �eld captures the layer structure in
the �ne grid velocity �eld. Further, we use the recovered �ne grid velocity �eld to compute
the saturation on a �ne grid in time. In Figure 3(a), we plot the saturation at t=0:06 obtained
by the �ne grid calculation. Figure 3(b) shows the corresponding saturation obtained using the
recovered velocity �eld from the coarse grid calculation. Most of detailed �ne scale �ngering
structures in the well-resolved saturation are captured by the corresponding calculation using
the recovered velocity �eld from the coarse grid pressure calculation. The agreement is quite
striking.

3.3. Upscaling the two-phase transport equation

The MsFEM can also be used to upscale the transport equation. Upscaling the convection-
dominated transport is di�cult due to the nonlocal history-dependent memory e�ect [11].
Here we use the upscaling method proposed in Reference [12] to design an overall coarse
grid model for the transport equation. The work of Efendiev et al. [12] for upscaling the
saturation equation involves a moment closure argument. The velocity and the saturation are
separated into a local mean quantity u0 and a small-scale perturbation u′ with zero mean.
If we ignore the third-order terms containing the �uctuations of velocity and saturation, we
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(b)(a)

Figure 3. (a) Fine grid saturation at t=0:06, N =1024; and (b) Saturation computed using
the recovered velocity �eld from the coarse grid calculation (N =64) using multiscale bases.

obtain an average equation for the saturation S as follows:

@S
@t
+ u0 · ∇f(S)=∇ · (f′(S)2D(x; t)∇S) (8)

where the di�usion coe�cients Dij(x; t) are de�ned by

Dij(x; t)=
∫ t

0
〈u′
i(x)u

′
j(y(�))〉 d�

〈g〉 denotes the average of g over each coarse element, and y(s) is the solution of the following
system of ODEs:

dy(s)
ds

= u0(y(s)); y(t)=x

Note that the upscaled equation for S is of a di�erent type now, changing from the original
convection equation to a convection–di�usion equation. Moreover, the enhanced di�usion
coe�cient is history dependent, re�ecting the nonlocal memory e�ect inherent in upscaling
convection-dominated transport [11]. The local �ne grid velocity u′ can be reconstructed from
the multiscale �nite element bases. We perform a coarse grid computation of the above
algorithm for the one-phase �ow f(S)= S on the coarse 64× 64 mesh using a mixed MsFEM
[4]. The fractional �ow at the right boundary, de�ned as F =

∫
Su�1 dy=

∫
u�1 dy, where u

�
1 is the

horizontal velocity component, is shown in Figure 4. It gives excellent agreement with the
reference fractional �ow curve which is obtained using a �ne 1024× 1024 mesh.
Upscaling the two-phase �ow is di�cult due to the dynamic coupling between the pressure

and the saturation. One important observation is that the �uctuation in saturation is relatively
small away from the oil=water interface. In this region, the multiscale bases are essentially
the same as those generated by the corresponding one-phase �ow (i.e. �=1). These base
functions are time independent. In practice, we can design an adaptive strategy to update
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Figure 4. The accuracy of the coarse grid algorithm. The solid line is the
well-resolved fractional �ow curve. The slash–dotted line is the fractional

�ow curve using above coarse grid algorithm.

the multiscale bases in space and time. The percentage of multiscale bases that need to be
updated is relatively small, typically a few percent of the total number of the bases [13].
The base functions that need to be updated are primarily those near the oil–water interface.
For those coarse grid cells far from the interface, there is little dynamic change in mobility.
Upscaling the saturation equation based on the moment closure argument can be generalized
to two-phase �ow with the enhanced di�usivity depending on the local small-scale velocity
�eld [12]. As previously mentioned, �uctuation of the velocity �eld u′ can be accurately
recovered from the coarse grid computation by using local multiscale bases.
Upscaling based on the moment closure argument is not easy to justify theoretically. In

particular, the �uctuation of the velocity �eld u′ can be quite large in practice. Recently, we
have developed a novel multiscale analysis for the convection-dominated transport equation
[14]. An interesting feature of this analysis is that the fast variable, y=x=�, which characterizes
the small-scale solution, enters only as a parameter. This makes it easier for us to generalize
our analysis to problems which do not have scale separation.
Other approaches to multiscale convection–di�usion problems have been developed, see e.g.

References [15–19]. Some of these methods assume that the media have periodic microstruc-
tures or scale separation, and explore these properties in their multiscale methods, while others
use wavelet approximations, renormalization group techniques, and variational methods.

4. MULTISCALE ANALYSIS FOR INCOMPRESSIBLE FLOW

Upscaling the nonlinear transport equation in two-phase �ows shares some of the common
di�culties in deriving the e�ective equations for incompressible �ow at high Reynolds number.
Understanding scale interactions for 3-D incompressible �ow has been a challenge. For high
Reynolds number �ow, the degrees of freedom are so numerous that it is almost impossible to
resolve the �ow all small-scales by direct numerical simulations. Deriving an e�ective equation
for the large-scale solution is very useful in engineering applications, see e.g. References
[20, 21]. In deriving a large eddy simulation model, one usually needs to make certain closure
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assumptions. The accuracy of such closure models is hard to measure a priori, and varies
from application to application. For many engineering applications, it is desirable to design
a subgrid-based large-scale model in a systematic way so that we can measure and control
the modelling error. However, the strong nonlinear interaction of small scales and the lack of
scale separation make it di�cult to derive an e�ective equation.
We consider the incompressible Navier–Stokes equation

u�t +(u
� · ∇) u� =−∇p� + ��u� (9)

∇ · u� =0 (10)

with multiscale initial data u�(x; 0)= u�0(x). Here u
�(t;x) and p�(t;x) are velocity and pressure,

respectively. � is viscosity. The choice for � is discussed below. We use boldface letters to
denote vector variables. For the time being, we do not consider boundary e�ects, but assume
that the solution is periodic with period 2	 in each dimension.
For incompressible �ow at high Reynolds number, small scales are generated dynamically

through nonlinear interactions. In general, there is no scale separation in the solution. However,
by decomposing the physical solution into a lower frequency component and a high-frequency
component, we can formally express the solution as the sum of a large-scale solution and a
small-scale component. This decomposition can be carried out easily in Fourier space. Further,
by rearranging the order of summation in the Fourier transformation, we can express the initial
condition in the following form:

u�(x; 0)=U(x) +W
(
x;
x
�

)

where W(x; y) is periodic in y and has mean zero. Here � represents the cut-o� wavelength
in the solution above which the solution is resolvable and below which the solution is un-
resolvable. We call this a reparameterization technique. The question of interest is how to
derive a homogenized equation for the averaged velocity �eld for small but �nite �.
If the problem is di�usion dominated, the small-scale solution will be damped out quickly

in time. In order for the oscillatory component of the velocity �eld to persist in time, we
need to have �=O(�2). In this case, the cell viscosity is zero to the leading order. Since
we are interested in the convection-dominated transport, we set �=0 and consider only the
incompressible Euler equation.
The homogenization of the Euler equation with oscillating data was �rst studied by

McLaughlin–Papanicolaou–Pironneau (MPP) [22]. In Reference [22], MPP made the impor-
tant assumption that the small-scale oscillation is convected by the mean �ow. Based on this
assumption, they made the following multiscale expansion for velocity and pressure:

u�(t;x) = u(t;x) + w
(
t;x;

t
�
;
�(t;x)
�

)
+ �u1

(
t;x;

t
�
;
�(t;x)
�

)
+ · · ·

p�(t;x) =p(t;x) + q
(
t;x;

t
�
;
�(t;x)
�

)
+ �p1

(
t;x;

t
�
;
�(t;x)
�

)
+ · · ·
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where w(t;x; �; y), u1(t;x; �; y), q, and p1 are assumed to be periodic in both y and �, and the
phase � is convected by the mean velocity �eld u

@�
@t
+ u · ∇x�=0; �(0;x)=x (11)

By substituting the above multiscale expansions into the Euler equation and equating coe�-
cients of the same order, MPP obtained a homogenized equation for (u; p), and a periodic cell
problem for (w(t;x; �; y); q(t;x; �; y)). On the other hand, it is not clear whether the resulting
cell problem for w and q has a unique solution that is periodic in both y and �. Additional
assumptions were imposed on the solution of the cell problem in order to derive a variant of
the k − � model.
Understanding how small-scale solutions propagate is clearly very important in deriving

the homogenized equation. Motivated by the work of MPP, we have recently developed a
multiscale analysis for the incompressible Euler equation with multiscale solutions [23]. Our
study shows that the small-scale oscillations are convected by the full oscillatory velocity
�eld, not just the mean velocity:

@��

@t
+ u� · ∇x��=0; ��(0;x)=x (12)

This is clear for the 2-D Euler equation since vorticity, !�, is conserved along the character-
istics. That is

!�(t;x)=!0

(
��(t;x);

��(t;x)
�

)

where !0(x;x=�) is the initial vorticity, which is of order O(1=�). A similar conclusion can
be drawn for the 3-D Euler equation. Now the multiscale structure of ��(x; t) is coupled to
the multiscale structure of the �ow. It is quite a challenge to unfold the multiscale solution
structure. Naive multiscale expansion for �� may lead to generation of in�nite number of
scales.
Motivated by the above analysis, we look for multiscale expansions of the velocity �eld

and the pressure of the following form:

u�(t;x) = u(t;x) + w(t; �(t;x); �; y) + �u(1)(t; �(t;x); �; y) + · · · (13)

p�(t;x) =p(t;x) + q(t; �(t;x); �; y) + �p(1)(t; �(t;x); �; y) + · · · (14)

where �= t=� and y= ��(t;x)=�. We assume that w and q have zero mean with respect to y.
The phase function �� is de�ned in (12) and it has the following multiscale expansion:

��= �(t;x) + ��(1)
(
t; �(t;x); �;

��

�

)
+ · · · (15)

This particular form of multiscale expansion is suggested by a corresponding Lagrangian
multiscale analysis [23]. If one tried to expand �� naively as a function of x=� and t=�, one
would �nd that there is a generation of in�nite number of scales at t ¿ 0 and would not be
able to obtain a well-posed cell problem.
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Expanding the Jacobian matrix, we get ∇x�
�=B(0)+�B(1)+ · · · . Substituting the expansion

into the Euler equation and matching the terms of the same order, we obtain the homogenized
equation

@tu+ u · ∇xu+∇x · 〈ww〉= − ∇xp; u|t = 0 =U(x) (16)

∇x · u = 0 (17)

〈ww〉, the Reynolds stress term, is space-time average in (y; �), and ww is the matrix whose
entry at the ith row and jth column is wiwj. w is given by

@�w+B(0)�∇yq=0; � ¿ 0 (18)

(B(0)�∇y) · w=0; w|�= 0 =W(x; y); t=0 (19)

It can be shown that B(0)�∇yq has zero mean in y. Note that there is no convection term in
the equation for w since we have treated convection at small scales exactly via the multiscale
phase function. The equation for w enforces incompressibility at small scales.
Finally, we compute B(0). � and �(1) obey the evolution equations

@t�+ (u · ∇x)�=0; �|t = 0 =x (20)

@��
(1) + (w · ∇x)�(1) = 0; �(1)|�= 0 =0 (21)

and the Jacobian matrix is

B(0) = (I −Dy�(1))−1∇x� (22)

The above analysis can be extended to problems with general multiscale initial data with-
out scale separation and periodic structure. This can be done by using the reparameterization
technique in Fourier space, which we described earlier for the initial velocity. This reparam-
eterization technique can be used repeatedly in time. The dynamic reparameterization also
accounts for the dynamic interactions between the large and small scales. The di�culty as-
sociated with �nding the local microscopic boundary condition can be overcome. Preliminary
computational results show that the multiscale method can capture accurately the large-scale
solution and the spectral properties of the small-scale solution.
Our goal is to use the multiscale analysis to design an e�ective coarse grid model that can

capture accurately the large-scale behaviour but with a computational cost comparable to the
traditional large eddy simulation (LES) models [20, 21]. To achieve this, we need to take into
account the special structures in the fully mixed �ow, such as homogeneity and possible local
self-similarity of the �ow in the interior of the domain. When the �ow is fully mixed, we
expect that the Reynolds stress term, 〈ww〉, reaches statistical equilibrium relatively quickly.
As a consequence, we may need to solve for the cell problem in � for only a small number
of time steps after updating the e�ective velocity in one coarse grid time step. Moreover,
we need not solve the cell problem in every coarse grid for homogeneous �ow. It should
be su�cient to solve one or a few representative cell problems for fully mixed �ow and
use the solution of these representative cell solutions to compute the Reynolds stress term
in the homogenized velocity equation. If this can be achieved, it would lead to a signi�cant
computational saving.
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5. CONCLUDING REMARKS

Multiscale methods o�er several advantages over direct numerical simulations on a �ne grid.
First, the multiscale bases can be computed locally and independently. This reduces the mem-
ory load of multiscale methods and lends them naturally to parallel computation. Secondly, we
can use an adaptive strategy to update the multiscale bases only in changing regions, avoiding
unnecessary computation. Thirdly, the multiscale methods o�er an e�ective tool in deriving
upscaled equations. For example, in oil reservoir simulations, it is often the case that multiple
simulations of the same reservoir model must be carried out in order to validate the �ne grid
reservoir model. After the upscaled model has been obtained, it can be used repeatedly with
di�erent boundary conditions and source distributions. In this case, the cost of computing the
multiscale base functions is a one-time overhead. If one can coarsen the �ne grid by a factor
of 10 in each dimension, the computational saving of the upscaled model over the original
�ne model could be as large as a factor 10 000 (three space dimensions plus time).
It remains a challenge to develop a systematic multiscale analysis to upscale convection-

dominated transport in heterogeneous media. There is a need to develop a new type of multi-
scale analysis which does not require a large separation of scales. One approach is to use the
two-scale analysis iteratively and incrementally for problems that have many or continuous
spectrum of scales. The dynamic reparameterization technique o�ers a natural way to imple-
ment this strategy. By using dynamic reparameterization, we can always divide a multiscale
solution into a large-scale component and a small-scale component. Interaction of the large
scales and small scales can be e�ectively modelled by using a two-scale analysis for short
time increments. We then use the reparameterization technique to decompose the solution
again into a large-scale component and a small-scale component. Thus, interaction of large-
and small-scale solutions occurs iteratively at each small time increment. In this way, over
long time intervals, we can account for interactions of all scales. We are currently pursuing
this approach with the hope of developing a systematic multiscale analysis for incompressible
�ow at high Reynolds number.
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